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The geometry of the resonant orbits of symplectic four-dimensional mappings, in the neighborhood of an
elliptic fixed point, is analyzed in the framework of a perturbative approach based on resonant normal forms.
The analysis of the truncated interpolating Hamiltonian allows one to determine the classification, the location,
and the stability of the integrable resonant structures in phase space.

PACS number(s): 03.20.+1i, 46.10.+z, 95.10.—a

I. INTRODUCTION

Four-dimensional (4D) symplectic mappings are a model
of a wide class of problems in different fields of physics,
such as celestial mechanics and beam dynamics. Contrary to
the 2D case, in 4D the structures of the phase space of a
nonintegrable map are not yet completely understood, even if
significant analytical and numerical results have been ob-
tained in the last two decades [1-3]. In this paper we outline
a method, based on perturbative tools, which allows one to
give a complete classification of the resonant orbits of a 4D
symplectic map in the neighborhood of a fixed point whose
eigenvalues lie on the unit circle.

Let us first consider a symplectic 2D integrable map in the
form

2/ =T(z,z*)=e" Mz, r=zz*, zeC, (1)
i.e., a twist mapping. Let Q(r)=w+Q,r+0(r?) be a real
function of r with (0, # 0. If the amplitude r is such that the
frequency €)(r)/2r is irrational, the orbits are dense on the
1D torus, i.e., on the circle z=\re'®, & e [0,27[. On the
other hand, if the frequency is rational, Q(r)/2m=p/q
(throughout the paper p,q will denote integers without com-
mon divisors), then T has an infinity of parabolic fixed points
z=+re'?, 9 e [0,27] of period g.

If one considers a nonlinear perturbation which preserves
the symplectic conditions, the Kolmogorov-Arnold-Moser
(KAM) theorem [4] ensures that for small perturbations there
exist invariant curves with “strongly irrational” (i.e., dio-
phantine) frequency, that are deformed circles. On the other
hand, the Poincaré-Birkhoff theorem [2,4] states that among
the infinite set of parabolic fixed points of period g of the
map T, only 2jq fixed points (where j is a positive integer)
survive under perturbation: one has jg hyperbolic fixed
points and jq elliptic fixed points of period g.

The KAM theorem is also valid for mappings with higher
dimensionality, and a generalization of the Poincaré-Birkhoff
theorem, which proves the existence of fixed points of arbi-
trary order in the neighborhood of an elliptic fixed point, has
been given in Ref. [2]. Indeed, a phenomenological approach
based on numerical analysis [5] shows that, besides fixed
points and 2D invariant tori, one can have 1D resonant orbits
(fixed lines). In this paper we outline the perturbative ap-
proach of resonant normal forms, which allows one to give a
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classification of the integrable resonant orbits (fixed points
and fixed lines), and to compute their stability as a function
of the polynomial expansion of the 4D symplectic mapping.

Resonant normal forms provide an effective analytical
framework to analyze the numerical data; moreover, they
give a nontrivial result about the stability of fixed points in
the case of a double resonance [see Eq. (12)] which could
hardly be obtained through numerical analysis. Owing to the
asymptotic character of the series, the results are not rigor-
ous, but are in agreement with the above-cited theorems and
with numerical simulations.

II. NORMAL FORMS

The normal form approach [6—8] is the natural generali-
zation of the canonical perturbation theory for Hamiltonian
flows to symplectic mappings: given a symplectic map F in a
2n-dimensional phase space, having a fixed point in the ori-
gin, one looks for a nonlinear transformation @ such that F
is transformed to a new map U that is “particularly simple,”
i.e., that has explicit invariants and symmetries. The map U
is the normal form. The conjugating equation of the map to
its normal form reads

@ oFed()=U({). (

o

where { are the new variables in phase space, called normal
coordinates. U is invariant under a symmetry group gener-
ated by a linear transformation A,, i.e., it commutes with
A, : this symmetry condition defines the normal form U and
the conjugating function @ (up to a gauge group).

The existence of a formal solution is guaranteed by theo-
rems that state that one can build a normal form U with
respect to the symmetry group generated by the linear part of
the map A,, or subgroups of it. Analytic solutions to the
functional equation (2) in open neighborhoods of an elliptic
fixed point do not exist in the generic case: the series are
divergent. Indeed, one can prove that the perturbative series
are asymptotic, and therefore optimal truncation can provide
a very accurate approximation of the dynamics of the non-
linear map: this has allowed applications to numerous prob-
lems of celestial mechanics [3] and accelerator physics
[9-12].
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In order to analyze the geometry of the orbits of the nor-
mal forms, one can build an Hamiltonian H whose orbits
interpolate the orbits of U; since U commutes with the sym-
metry group, one has

H(A,z)=H(z). (3)

The analysis of H allows one to determine perturbative ex-
pansions for a wide class of nonlinear quantities that charac-
terize the dynamics, such as the frequencies [10,12], the lo-
cation and stability of the fixed points [8,11], and the
topology of resonant orbits.

III. RESONANT STRUCTURES IN 2D

In the 2D case, in the neighborhood of an elliptic fixed
point, one can build normal forms defined by the symmetry
groups generated by the linear matrix A ,=diag(e'*,e”'?).
We shall express the normal forms and the interpolating
Hamiltonian in the variables (p,#8), related to the normal
coordinates by {= \/,—)eio. One can have two different types
of normal forms: nonresonant normal forms [a/(27) irra-
tional], which are invariant under the group of continuous
rotations, and resonant normal forms [ @/(2 7)=p/q], which
are invariant under the group of discrete rotations by an
angle of 27/q. In the first case the normal form is an
amplitude-dependent rotation (i.e., a twist mapping), and the
interpolating Hamiltonian H is a function of the amplitude
p; in the second case H has the form

h(p,0)=—iH((p,0))=2 hy p**19%cos(1q 0+ ¢y ).
k,l

4)

The coefficients h; ; are real and positive; one distinguishes
between the coefficients &, 5, which produce the dependence
of the frequency on p, and the other coefficients, which ex-
cite the nonlinear resonance of order g. We consider a ge-
neric mapping with #; , # 0 and a resonance of order g=35.
The analysis of h gives the topology of the resonant orbits: if
we truncate it at the first significant resonant term [i.e., ne-
glecting O(p?*1/2)], we obtain a pendulum Hamiltonian
which has g hyperbolic and g elliptic fixed points, in agree-
ment with the Poincaré-Birkhoff theorem. If the first order
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resonant coefficient kg, is zero, one has to consider the
higher orders: therefore it is possible to find cases where one
has 2jq fixed points, with j positive integer.

IV. RESONANT STRUCTURES IN 4D
Classification of normal forms

In the 4D case, the symmetry groups that define the
normal form in the neighborhood of a bi-elliptic fixed
point are  generated by the linear  matrix
A, =diag(e’®1,e 1, e'*2 e7'®2) Let @=(a;,a,) and k be
a 2D vector with integer entries; the different types of solu-
tion to the equation

(a-kK)mod 27=0 (5)

define four different groups of invariance, and therefore four
types of normal forms. Interpolating Hamiltonians will be
expressed in the coordinates (pi,p,,0;,6,), related to the
normal coordinates by ;= vVp,e%1, {,= Vp,e'®.

Nonresonant case. If k=0 is the only solution of (5), the
symmetry group is the direct product of 2D continuous rota-
tions. The normal form is an amplitude-dependent rotation
and k is a power series in the amplitudes p;,p,, which are
the independent integrals of motion. The 2D tori
[0,27[ X[0,27[ are the invariant surfaces.

Single-uncoupled resonance. If the solution of (5) is
k=1(q,0), or k=1(0,q) (where | € Z and q € N), the
symmetry group generated by the linear part is given by the
direct product of 2D continuous rotations times 2D discrete
rotations by an angle 27/q. In the case k=1(q,0), h has the
form

h(p1.p2.01)= 2 By ey 1P 112 (py) k2
ky ky 0

X cos(1q 61+ ek, ,.1)- ©)

One has two independent integrals of motion: 4 and p,. A
similar result holds for the case k=1(0,q).

Single-coupled resonance. If the solution of (5) is
k=1(q,p) (where l,p € Z and g € N), the symmetry group
is a one parameter compact group. The Hamiltonian /4 has
the form

h(p1,p2:01,00)= 2 i i, a(p1)192%(p) 2 1P cos[1(q 6, +p 6,) + @y ik, 1])- (7

kq.ky,1

The independent integrals of motion are pp, —¢gp, and A.

Double resonance. In this case the solution of (5) is k=1,(q,p1) +1,(p2,q2) (Where l,,l,,p1,p, € Zand q,,9, € N). If
P1=p,=0, the symmetry group is given by the direct product of discrete 2D rotations by an angle 27/q, times discrete 2D

rotations by an angle 27/q,, and h reads

h(p1,p)= 2

ky.ky .1y,

k14111720 o kot 11a/2r 1+ +
(pr) 1t ha(p,)kathaa [hkl,/cl,ll,12‘:05(11‘11‘91"‘12‘1202‘*‘‘Pkl,kz,l1

)

,12

Ry ky1,,0,€05(119101= 126, + @ 1 1) ]- ®
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A similar result holds for the other cases. When a double
resonance condition is satisfied, 4 is the only explicit integral
of motion, and therefore the resonant normal forms do not
provide a complete set of prime integrals. Numerical analysis
shows that when there are stable orbits in the neighborhood
of the fixed point, the second integral of motion exists for
most initial conditions: an approximate value can be ob-
tained by using nonresonant normal forms truncated at order

N<min{(|ps|+41)/2,(|p2| + q2)/2}.

Analysis of the orbits of a 4D twist mapping

We first analyze the orbits of the 4D twist mapping:
z;=Ty(z)=exp[iQ;(p1,p2)]z1, p1=212]
&)

z25=Ty(2)=exp[iQ,(p1,p2) )22, p2=2223.

Since the map is integrable, one can compute all the relevant
quantities of its orbits; the iterates always lie on the 2D torus,
but according to the different values of the nonlinear fre-
quencies, one finds different topologies.

Nonresonant case. We fix (p;,p,) such that Q(p;,p2)
and Q,(p;,p,) satisfy a nonresonant condition: one obtains
an orbit that is dense on the torus; its closure has dimension
two, and it is connected.

Single-uncoupled resonance. We fix (p;,p;) such that
Q.(py,p2) and Q,(py,p,) satisfy a single-uncoupled reso-
nant condition: one obtains an orbit that is dense on the
direct product of a 1D torus times g parabolic 2D fixed
points. We call these structures ‘‘single-uncoupled resonance
parabolic fixed lines of period q.” The closure of the orbit
has dimension one, and is made up of g pieces which are
connected. For each initial condition chosen in 6,
e [0,27/q[,0,=0, one obtains an infinity of different para-
bolic fixed lines of the same period, having the same geom-
etry.

Single-coupled resonance. We fix (p;,p;) such that
Q4(p1,p2) and Q,(p;,p;) satisfy a single-coupled reso-
nance condition: one obtains an orbit, which lies on the 2D
torus, that is dense on the 1D curve of the equation

0,(t)=6,+tpv, 0,(t)=0,+tqv, te[02nw[. (10)

We call this structure the ‘‘single-coupled resonance para-
bolic fixed line”’; the closure of the orbit is connected. For
each initial condition chosen in 8; € [0,27/p[,8,=0 one ob-
tains an infinity of different parabolic fixed lines of the same
type, having the same geometry.

Double resonance. We fix (p1,p,) such that Q,(p;,p2)
and Q,(p;,p,) satisfy the double resonance condition ex-
plicitly considered in the previous subsection: one obtains an
orbit, which lies on the 2D torus, that is made up of g,q,
parabolic fixed points. The dimension of the orbit is zero,
and is made up of q;q, components trivially connected. For
each initial condition chosen in 8, e [0,27/q[,6,
e [0,27/q,[, one obtains an infinity of families of fixed
points.
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Classification of 4D resonant structures

Following the strategy outlined for the 2D case, we have
analyzed the first order resonant truncation of the interpolat-
ing Hamiltonian in order to classify the resonant structures of
a symplectic 4D map. We consider a 4D twist mapping
T [see Eq. (9)] having a family of resonant orbits in the
neighborhood of the origin. We restrict ourselves to the
analysis of resonances with |p|+g=5. We conjecture that a
small symplectic perturbation changes the topology of these
orbits according to the following cases.

Single-uncoupled resonance. Let p,,p, be positive ampli-
tudes such that the single-uncoupled resonance condition is
satisfied, i.e., there exist an infinity of single-uncoupled reso-
nance parabolic fixed lines of period q. A generic perturba-
tion preserves only two single-uncoupled resonance fixed
lines of period q: one is elliptic and one is hyperbolic. (By
generic perturbation we mean a perturbation which gives rise
to a Hamiltonian with A ;# 0. Nongeneric cases give rise to
a situation analogous to the 2D case with j>1.)

Single-coupled resonance. Let p,,p, be positive ampli-
tudes such that the single-coupled resonance condition is sat-
isfied, i.e., there exist an infinity of single-coupled resonance
parabolic fixed lines. A generic symplectic perturbation (see
above) preserves only two fixed lines: one is elliptic and one
is hyperbolic.

Double resonance. Let py,p, be positive amplitudes such
that the double resonance condition is satisfied, i.e., there
exists an infinity of parabolic fixed points of period g1g,. A
generic symplectic perturbation (see above) preserves
44,4, fixed points, which can be split in four families: fixed
points which are obtained by iteration of the map belong to
the same family. We denote by (p; ,p>) the amplitudes of
the four families of fixed points, and we define the quantities

a=2hjy000, B=hi100,

Y=2hg200
8=7%(q1)%ho01.0pr D)2 8=7F(q1)ho010(pr )9

7=(q2)%h00.0.1(p> )% n=—(q2)*ho001(p5 )"

sy=sgn[(|8|a+|7n|y)>—4| 87| 8*]. (11)

Then, one can prove that, according to the different values of
these signs, one has two possible types of stability of the four
families:

s,>0=2EH+EE+HH,
(12)
5;<0=2CI+2EH,

where EE is equal to the bi-elliptic fixed points, EH is equal
to the elliptic-hyperbolic fixed point, HH is equal to the bi-
hyperbolic fixed points, and CI is equal to the complex in-
stability. A similar result holds for the other cases of double
resonances. The analysis of the physical meaning of these
two different stability situations needs a deeper investigation.
It must be pointed out that these results are valid in the
neighborhood of the fixed point located in the origin: one
could have other combinations of stability when the reso-
nance is sufficiently far from the origin.
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FIG. 1. Projection on a 3D space of the iterates of the 4D Hénon
mapping: neighborhood of a single-resonance (g=>5) elliptic line
(a) and neighborhood of a coupled-resonance (p=2, g=3) elliptic
line (b).

Numerical check

The numerical check of this conjecture has been per-
formed for different models using a computer code for the
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visualization of projections of 4D orbits, a code for comput-
ing the interpolating Hamiltonian [13], and a code for com-
puting the fixed points, based on a 4D generalization of the
method given in Ref. [14]. Elliptic fixed lines relative to both
uncoupled and coupled resonances have been found for dif-
ferent models. We have considered the 4D Hénon map:

_ i
z1=e"‘”(zl—4-[<z1+z;*>2~<zz+23‘ ’2])
. (13)
. l
zé=e“"2(zz+ 5[(Z1+Zf)2(22+2;)] .

In Fig. 1(a) we display the projection on a 3D space
(x,py,y) (where z;=x—ip, and zp=y—ip,) of the stable
neighborhood of a single-uncoupled resonance elliptic fixed
line of period g=5. The linear frequencies were fixed at
w,/(27)=0.205 and w,/(27)=0.6180; 50 000 iterates of a
suitable initial condition are plotted. In Fig. 1(b) we display
the 3D projection of the stable neighborhood of a single-
coupled resonance elliptic fixed line, p=2 and g=3, for the
same model with w,/(27)=0.638 and w,/(2)=0.412.
One can see that the topology of the orbits is consistent with
the above-quoted scheme. The case of the double resonance
has also been analyzed for different models: we do not give
the results here for the sake of brevity. A more detailed ex-
position of the analytical computations and of the numerical
check will be described in a forthcoming paper.
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FIG. 1. Projection on a 3D space of the iterates of the 4D Hénon
mapping: neighborhood of a single-resonance (g=35) elliptic line
(a) and neighborhood of a coupled-resonance (p=2, g=3) elliptic
line (b).



